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Reflections from Rotary-Vane
Precision Attenuators

Due to finite thickness of the absorbing
vanes, the scattering coefficients [1] S and
Ss; of a rotary-vane attenuator [2] are not
zero (as would be true of an “ideal” device)
but are, in fact, functions of attenuator set-
ting. Thus, terminal reflections cannot be
eliminated by simply fixed-tuning the ports.
In this correspondence we derive an equation
relating Su (Sz2) to the attenuator setting by
considering the effects of small reflections
from vanes of an otherwise perfect attenuator.
The result is found to contain three complex
constants that can be determined experi-
mentally, with this expression one can, when
necessary, take reflections into account ana-
lytically by determining the constants ap-
propriate to the attenuator under considera-
tion. This procedure is useful, e.g., when using
a combination of an attenuator and a mov-
able short-circuit as a variable impedance
standard [3]; or, when determining “mis-
match error” in a transmission system in
which the generator or load are not matched
to the line [4], [5].

Consider the cascade of three networks
shown in Fig. 1. Since each circular wave-
guide supports two mutually-orthogonal
dominant modes, the transitions and circular
section are three- and four-ports, respec-
tively. The (symmetrical) scattering matrices
of these networks are thus of the form

[Sis Sis Six

S = Sts Stz 1
L St

rSi: St Stz Sl

Sis Sty She

= 2
S Shs Sh @
L Sha
~Sts Sts Sto
Sl = Sho 810 (3)
B 8010

where coefficients subscripts are defined by
the polarization directions shown in Fig. 1.
Absorbing vanes are assumed to lie in the
horizontal plane of each transition and in the
2-4 plane of the rotating section.
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By applying the appropriate coordinate
transformation, one can solve for the overall
scattering matrix

S Sie
S = [ ] 4
S12 Saz @

of the cascade. To simplify this calculation,
we assume that Sge’, Si3’, and Ss’ are of the
form

Sul =1—38y (5)
while all other terms are of the form
Su/ = 8y (6)

with §,; small. Retaining only terms to first
order in 5,, yields an equation of the form

S = A1 + Buisin? 8 + Ciy sin? (26)
+ D sin (20) + En sin (40) (7)

with a similar result for Ss». The constants in
(7) are complicated functions of the various
5:,’s; and the vane angle ¢ is related to the
attenuator setting in dB by

cos? @ = 10~dB/20, 8)

Equation (7) can be simplified by assum-
ing further that vanes absorb all transmitted
waves polarized parallel to them and that no
cross-coupling occurs between spatially or-
thogonal modes. That is

Sty = Sty = Shio = St =10
Sia=8li=8%=8:=0 .9
=0

The overall reflection coefficient Sy is then
of the form

Sii= Aun + Bn sin? § + C'; sin? (2(9) (10)

with a similar result for Ss.. Under the same
approximations which lead to (10), the trans-
mission coefficient is found to be

812 = Ajacos?f (11)

where A, is a complex constant with magni-
tude less than unity. Thus, besides causing
variable terminal reflections, slightly reflect-
ing vanes will also introduce a fixed insertion
loss and a fixed phase shift. To first order they
do not, however, cause variable errors in at-
tenuation, nor do they cause phase shift that
varies with attenuator setting. Equation (11)
has been found to be well satisfied in measure-
ments of attenuation [5] and phase shift [6]
of actual rotary-vane attenuators.

In order to check the validity of (10), the
magnitude | Su| and | Sz2| of several commer-
cially-made X- and K-band attenuators were
measured with reflectometers that had been
tuned by the procedure of Engen and Beatty
[7]. In each measurement, the opposite port
of the attenuator was terminated in a matched
load that had been tuned to eliminate reflec-
tions. Figures 2 and 3 show typical results.
Points represent experimental values while
curves were calculated from (10) using the
constants given in Table I. These constants
were determined by fitting the results to (10)
at five experimental points. Since the magni-
tude of S;; depends on 4., B.,, and C;; only
to within a common arbitrary phase angle,
A;, was assumed real. One notes excellent
agreement between theory and experiment
over the entire attenuation range. Although
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Fig. 1. JJRotary-vane attenuator represented by cascade of three networks. Transitions are three-ports while the
circular section is a four-port. Absorbing vanes lie in horizontal plane of transitions and in the 2-4 plane of
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circular section.

Fig.f2. Measured and calculated magnitudes of reflection coefficients of FXR X164A X-band attenuator.

Fig. 3. Measured and calculated magnitudes of reflection coefficients of FXR K164AF K-band_attenuator.
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TABLE I

ATTENUATOR CONSTANTS

FXR X164A X-Band Attenuator

FXR K164AF K-Band Attenuator

Su S22 Su S2o
A 0.0412 0.0439 0.0436 0.0520
Biy 0.0560 e~816 0.0679 ¢~73 66 0.0580 ¢778:78 0.0334 e 7248
Cis 0.0125 e774 04 0.00927 ¢75-08 0.0135 ¢77510

0.0106 ¢71 88
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the phase of .S;; was not measured, it is be-

lieved unlikely that it would not similarly
agree with theory.

J. D. HoLM

D. L. JounsoN
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Temperature Dependence of Com-
posite Coaxial Resonators

Under certain circumstances, it is neces-
sary to construct a composite coaxial resona-
tor vsing inner and outer conductors having
different thermal expansion coefficients. This
may be required for mechanical reasons or as
a means of adjusting the resonator tempera-
ture stability. This correspondence describes
an analysis of such a resonator as well as
some experimental results.

The resonant frequency of a quarter-wave-
length capacitively loaded line is given by

1012

— = L
07 tan 2aL /N 1)

where

w=resonant frequency, rad/s

C =loading capacitance, pF

Z =impedance of coaxial line, ohms
L=length of inner conductor, cm

A =wavelength at resonance, cm.

Equation (1) is transcendental and can be
solved by graphical means! if the loading ca-
pacitance is known, by letting

Y11 = tan 27L/A @)
and
Ne
Yie = ——— 3
Y omCz ®

Manuscript received June 16 1966; revised Septem-
ber 8, 1966.

1 G. K. Megla, Dezimeterwellentechnik. Berlin: Veb
Verlag Technik, 1961, p. 189.



